3.21.54 \(\int \frac {1}{(a+\frac {b}{x^3})^{3/2} x^6} \, dx\) [2054]

3.21.54.1 Optimal result
3.21.54.2 Mathematica [C] (verified)
3.21.54.3 Rubi [A] (verified)
3.21.54.4 Maple [B] (verified)
3.21.54.5 Fricas [C] (verification not implemented)
3.21.54.6 Sympy [A] (verification not implemented)
3.21.54.7 Maxima [F]
3.21.54.8 Giac [F]
3.21.54.9 Mupad [F(-1)]

3.21.54.1 Optimal result

Integrand size = 15, antiderivative size = 517 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=-\frac {8 \sqrt {a+\frac {b}{x^3}}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}+\frac {2}{3 b \sqrt {a+\frac {b}{x^3}} x^2}+\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}-\frac {8 \sqrt {2} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \]

output
2/3/b/x^2/(a+b/x^3)^(1/2)-8/3*(a+b/x^3)^(1/2)/b^(5/3)/(b^(1/3)/x+a^(1/3)*( 
1+3^(1/2)))-8/9*a^(1/3)*(a^(1/3)+b^(1/3)/x)*EllipticF((b^(1/3)/x+a^(1/3)*( 
1-3^(1/2)))/(b^(1/3)/x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*2^(1/2)*((a^(2/ 
3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2) 
*3^(3/4)/b^(5/3)/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/x+a 
^(1/3)*(1+3^(1/2)))^2)^(1/2)+4/3*a^(1/3)*(a^(1/3)+b^(1/3)/x)*EllipticE((b^ 
(1/3)/x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)/x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I 
)*(1/2*6^(1/2)-1/2*2^(1/2))*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1 
/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(1/4)/b^(5/3)/(a+b/x^3)^(1/2)/(a^(1/ 
3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)
 
3.21.54.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.10 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=-\frac {2 \sqrt {1+\frac {a x^3}{b}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {3}{2},\frac {5}{6},-\frac {a x^3}{b}\right )}{b \sqrt {a+\frac {b}{x^3}} x^2} \]

input
Integrate[1/((a + b/x^3)^(3/2)*x^6),x]
 
output
(-2*Sqrt[1 + (a*x^3)/b]*Hypergeometric2F1[-1/6, 3/2, 5/6, -((a*x^3)/b)])/( 
b*Sqrt[a + b/x^3]*x^2)
 
3.21.54.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 543, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {858, 817, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^6 \left (a+\frac {b}{x^3}\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 858

\(\displaystyle -\int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^4}d\frac {1}{x}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {2}{3 b x^2 \sqrt {a+\frac {b}{x^3}}}-\frac {4 \int \frac {1}{\sqrt {a+\frac {b}{x^3}} x}d\frac {1}{x}}{3 b}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {2}{3 b x^2 \sqrt {a+\frac {b}{x^3}}}-\frac {4 \left (\frac {\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}\right )}{3 b}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2}{3 b x^2 \sqrt {a+\frac {b}{x^3}}}-\frac {4 \left (\frac {\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}\right )}{3 b}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {2}{3 b x^2 \sqrt {a+\frac {b}{x^3}}}-\frac {4 \left (\frac {\frac {2 \sqrt {a+\frac {b}{x^3}}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}\right )}{3 b}\)

input
Int[1/((a + b/x^3)^(3/2)*x^6),x]
 
output
2/(3*b*Sqrt[a + b/x^3]*x^2) - (4*(((2*Sqrt[a + b/x^3])/(b^(1/3)*((1 + Sqrt 
[3])*a^(1/3) + b^(1/3)/x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3) + 
 b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[ 
3])*a^(1/3) + b^(1/3)/x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1 
/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqr 
t[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + 
 b^(1/3)/x)^2]))/b^(1/3) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*a^(1/3)*(a^( 
1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + 
 Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) 
+ b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(3^(1/ 
4)*b^(2/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt 
[3])*a^(1/3) + b^(1/3)/x)^2])))/(3*b)
 

3.21.54.3.1 Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
3.21.54.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2199 vs. \(2 (385 ) = 770\).

Time = 1.91 (sec) , antiderivative size = 2200, normalized size of antiderivative = 4.26

method result size
risch \(\text {Expression too large to display}\) \(2200\)
default \(\text {Expression too large to display}\) \(2867\)

input
int(1/(a+b/x^3)^(3/2)/x^6,x,method=_RETURNVERBOSE)
 
output
-2/b^2*(a*x^3+b)/x^2/((a*x^3+b)/x^3)^(1/2)+1/b^2*a*(2*(x*(x+1/2/a*(-a^2*b) 
^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/ 
2)/a*(-a^2*b)^(1/3))+(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)) 
*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b 
)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(x-1 
/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^( 
1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/ 
3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^(1 
/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a 
*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(((-1/2/a*(-a^2*b)^(1/3)+1/ 
2*I*3^(1/2)/a*(-a^2*b)^(1/3))/a*(-a^2*b)^(1/3)+1/a^2*(-a^2*b)^(2/3))/(-3/2 
/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*a/(-a^2*b)^(1/3)*Ellipti 
cF(((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2 
*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),(( 
3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/3) 
-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a 
^2*b)^(1/3))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2)) 
+(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*EllipticE(((-3/2/a* 
(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/ 
2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(-a...
 
3.21.54.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.12 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\frac {2 \, {\left (b x \sqrt {\frac {a x^{3} + b}{x^{3}}} + 4 \, {\left (a x^{3} + b\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, \frac {1}{x}\right )\right )\right )}}{3 \, {\left (a b^{2} x^{3} + b^{3}\right )}} \]

input
integrate(1/(a+b/x^3)^(3/2)/x^6,x, algorithm="fricas")
 
output
2/3*(b*x*sqrt((a*x^3 + b)/x^3) + 4*(a*x^3 + b)*sqrt(b)*weierstrassZeta(0, 
-4*a/b, weierstrassPInverse(0, -4*a/b, 1/x)))/(a*b^2*x^3 + b^3)
 
3.21.54.6 Sympy [A] (verification not implemented)

Time = 0.78 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.08 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=- \frac {\Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 a^{\frac {3}{2}} x^{5} \Gamma \left (\frac {8}{3}\right )} \]

input
integrate(1/(a+b/x**3)**(3/2)/x**6,x)
 
output
-gamma(5/3)*hyper((3/2, 5/3), (8/3,), b*exp_polar(I*pi)/(a*x**3))/(3*a**(3 
/2)*x**5*gamma(8/3))
 
3.21.54.7 Maxima [F]

\[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}} x^{6}} \,d x } \]

input
integrate(1/(a+b/x^3)^(3/2)/x^6,x, algorithm="maxima")
 
output
integrate(1/((a + b/x^3)^(3/2)*x^6), x)
 
3.21.54.8 Giac [F]

\[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}} x^{6}} \,d x } \]

input
integrate(1/(a+b/x^3)^(3/2)/x^6,x, algorithm="giac")
 
output
integrate(1/((a + b/x^3)^(3/2)*x^6), x)
 
3.21.54.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^6} \, dx=\int \frac {1}{x^6\,{\left (a+\frac {b}{x^3}\right )}^{3/2}} \,d x \]

input
int(1/(x^6*(a + b/x^3)^(3/2)),x)
 
output
int(1/(x^6*(a + b/x^3)^(3/2)), x)